Quantum gravity

AND QUANTUM  ANTIGRAVITY

Gravity is neither a fundamental force, nor a spacetime curvature. There are no physical, empirically detectable graviton particles, for the same reason that there are no magneton particles of the magnetic field. Magnetons and gravitons are at best virtual particles only.

As we shall see below, quantum gravity and quantum antigravity are essentially not so much different from electromagnetism. This would explain the reason why there has not been a successful unification of Einsten’s general realativity and electromagnetism. Well, it is simply impossible to unify electromagnetism, or quantum mechanics, with gravity, when gravity is not properly understood.

 

In general, for quantum gravity, or quantum antigravity, to be generated naturally, or artificially, we need the following 3 components properly combined, oriented, and tuned:

  1. angular momentum ;

  2. electric field ;

  3. magnetic field.

 

Ideally, the electric and magnetic field lines should be perpendicular. Also ideally, the vector of angular momentum should be in a plane perpendicular to the lines of the electric field. Deviations from the 90′ angle will weaken the effect.

Let’s illustrate it with a simple example.

As the example, we will consider the anomalous behavior of a gyroscope. What keeps the spinning gyroscope from falling under the force of gravity while it is rotating (precessing) horizontally? Could this really be antigravity? Let’s see.

The spinning gyroscope provides the first component — angular momentum. This vector of angular momentum should be perpendicular to the lines of the electric field. Earth happens to be an asymmetric (spherical) capacitor, as required by the Biefeld-Brown effect.

Earth-AntigravityCapacitor

Magnetic-Field.jpg

Except in magnetic pole regions, Earth’s magnetic field lines are generally perpendicular to Earth’s electric field lines.

Let’s summarize the above example.

We have the 3 above components: the angular momentum of the spinning gyroscope, Earth’s electric and magnetic fields. Earth’s electric and magnetic fields are generally perpendicular, and the angular momentum of the spinning gyroscope rotating (precessing) horizontally is generally always in the plane perpendicular to the lines of Earth’s electric field. Therefore, what keeps the spinning gyroscope from falling under the force of gravity while it is rotating (precessing) horizontally is antigravity, which perfectly explains the following serious experimental anomalies:

But, shouldn’t antigravity be also acting on the gyroscope when it spins vertically? When the gyroscope spins vertically, the angle between its vector of angular momentum and the lines of the electric field is zero degrees, therefore the strength of interaction between them is zero. The function for this interaction is a modulus sinusoid, |sin|. At zero degrees the value is zero, at 90′ the value is maximum, and at 180′ the value is zero, again.

In the section on the Biefeld-Brown page, we have a similar example of an antigravity effect with a capacitor.

In the above case, the gyroscope (from its own side) provides only its angular momentum, while perpendicular electric and magnetic fields are provided by Earth.

In the case of the capacitor, it provides its own electric field (with inhomogeneous charge density distribution in the dielectric) that is aligned with Earth’s electric field. Magnetic field is provided by Earth. But where is the third component, the angular momentum?

In the case of the capacitor, it is the combined angular momentum of those dielectric’s elementary particles that happen to have their angular momentum oriented perpendicular to the internal lines of capacitor’s electric field, which explains the reason why the Biefeld-Brown effect is very weak, despite that it requires extremely high voltage. It is weak, because the third component, the angular momentum, is very weak. Comparatively, the angular momentum of the gyroscope is very powerful. That is why gyroscope exhibits a far more spectacular antigravity efect than the capacitor.

So far, so good. But these were just two simple examples. Now, let’s see if we can explain everything else.

We have examined antigravity effects related to gyroscope and capacitor. It is relatively easy to experiment with both of them. Now, let’s consider another case.

The Earth is a complete macro-scale example of an antigravity device. It is an asymmetric capacitor with positively charged plate being larger; its electric and magnetic field lines are perpendicular (except in magnetic pole regions); and its angular momentum is perfectly perpendicular to the electric field lines around the equator, declining from the 90′ angle to zero degrees angle towards magnetic poles. The Biefeld-Brown vector is “up”. This way we have the complete 3 antigravity generation components combined, oriented, and tuned.

Earth as a complete example of an antigravity device?! Here comes the “quantum” part of gravity and antigravity.

Isn’t it obvious that Earth is a “gravity device” only? Yes, Earth is a gravity device, and it is also an antigravity device at the same time. How is it possible?

Above, I explained how Earth is a complete example of a macro-scale antigravity device. Now, let’s find out how Earth at the same time can also be a quantum-scale gravity device.

bb_matter

Earth is composed of atoms. Atom can be conceptualized as a spherical asymmetric electric capacitor, but this time with negatively charged plate being larger.

The direction of Biefeld-Brown vectors is always from negative to positive plate. In the case of an atom, its negative plate is larger, so the B-B vector is said to be “down” (towards nucleus), indicating attractive gravity.

All atoms composing Earth have their B-B vectors “down”, and atoms composing material bodies on Earth also have their B-B vectors “down”, therefore Earth will attract these material bodies, and material bodies will attract Earth — an attractive gravitational interaction.

On the quantum-scale, Earth and material bodies on Earth are composed of many “capacitors” (atoms) that have their Biefeld-Brown vectors “down”, while on the macro-scale, Earth is just one big planet-size capacitor that has its Biefeld-Brown vectors “up”, meaning directed away from its “nucleus”, i.e. from the ground up towards ionosphere. In this way, from the quantum-scale perspective, Earth is an attractive gravity device, and at the same time, from the macro-scale perspective, Earth is an antigravity device.

The reason that almost all material bodies on Earth do not experience any detectable antigravity effects should be clear now. Just consider the difference between the two above examples of spinning gyroscope and charged capacitor, and all other material bodies. Most of the material bodies on Earth are neither highly electrically charged, nor do they possess any sufficient angular momentum in order to experience any detectable antigravity effects inside Earth’s macro-scale perpendicular electric and magnetic fields, except for bicycle wheels and airplane propellers, or even clouds.

In order to illustrate this new idea that from the quantum-scale perspective, Earth is an attractive gravity “device,” and at the same time, from the macro-scale perspective, Earth is a repulsive gravity “device,” let’s view the following short video:

In the above video, the magnetic device composed of one big central magnet, and six smaller “flipped” (or “inverted”) magnets is clearly capable of magnetic attraction and repulsion at the same time. Just because the large magnet attracts, and small magnets repel, it does not follow that these two opposing effects cancel each other out, and that is the reason for the unexpected and particularly important “side-effect”: STABILITY.

Let’s imagine what could happen between the Sun and the Earth, when Sun is gravitationally attracting Earth, but Earth is both gravitationaly attracting and repelling the Sun at the same time. Would it be possible that Earth could have a stable orbit around the Sun as a result of this unexpected “side-effect” ?

This could, in principle, explain the stability of the entire Solar system, including all the moons of all the planets.

b-b_vector

Look at these two cute little spherical “capacitors” above !!

In the case of an atom of our ordinary matter, its negative plate is larger, so the B-B vector is said to be “down” (towards nucleus), indicating attractive gravity.

But in the case of antiatom of antimatter, its B-B vector is “up”, indicating repulsive gravity (i.e. antigravity).

I am afraid that we will have to answer a few more difficult questions.

 

To repel, or not to repel, that is the question!

CPTsymetric

nsc_20170107

Antigravity: Discovering if antimatter falls upwards

Presently, physicists are seriously considering the question, if matter and antimatter are affected differently by Earth’s gravity. Could antimatter fall upward – that is, exhibit antigravity – or fall downward at a different rate?

When it comes to antimatter, what goes up doesn’t necessarily come down. In a new study, physicists weighed antimatter in an effort to determine how this strange cousin of matter interacts with gravity. Ordinary matter atoms fall down due to the pull of gravity, but the same might not be true of antimatter, which has the same mass as matter, but opposite charge and spin. Scientists wondered whether antimatter atoms would instead fall up when pulled by gravity, and

whether such a thing as antigravity exists. In the unlikely event that antimatter falls upward, we’d have to fundamentally revise our view of physics and rethink how the universe works, Joel Fajans, a physicist

at the Lawrence Berkeley National Laboratory in California, said in a statement. The results of the tests weren’t conclusive. “Is there such a thing as antigravity? Based on free-fall tests so far, we can’t say yes, or no,” Fajans said. “This is the first word, however, not the last.” In the future, CERN researchers plan to upgrade their experiment to a stage called ALPHA-2, which should allow them to make more precise tests. The scientists plan to use lasers to cool the antiparticles to reduce their energy while still being held by the trap; then the trap’s magnetic fields could be used to manipulate the cooled antiparticles so they decay more slowly when the trap gets turned off, making measurements easier.

Three more CERN experiments are preparing to measure the gravitational behaviour of antihydrogen:

 

 

Will antimatter be repelled by Earth’s gravity?

If CERN physicists will experiment with antihydrogen atoms, then in addition to my above prediction that antihydrogen atom would be definitely repelled by Earth’s atoms (small “capacitors”) because their B-B vectors are “down” as opposed to antihydrogen’s B-B vector being “up”, I predict that the antihydrogen atom will also be repelled, at the same time, by Earth as one big antigravity device. There will be a definite, conclusive repulsion.

 

Let’s leave the antimatter alone, as we are not going to use it in order to design the G-engine. Finally, we are ready to consider practical implications of the above hypothesis.

Let’s experiment.

Comment_quantum_gravity_graphicV2

Naked Singularity
Two conjectures about gravity — whose quantum origin remains unknown — unexpectedly support each other in new calculations, increasing the chances that both are correct. Cosmic Censorship Conjecture This 1969 conjecture states that singularities, where Einstein’s classical theory of gravity breaks down and quantum gravity takes over, are never “naked,” meaning they cannot exist outside of black holes. Weak Gravity Conjecture This 2006 conjecture states that gravity is always the weakest force in any logically consistent universe, as it is in ours. How the Conjectures Reinforce Each Other In computer simulations, a high-energy electric field on the boundary of a model universe known as Anti-de Sitter space causes a naked singularity to form. But if gravity is weak (consistent with B), the high-energy electric field causes quantum particles to gravitationally collapse into a black hole (reinforcing A).
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s