Nobel Prize


TWO Nobel Prize winning experiments

If my hypothesis is correct, the following simple experiment will constitute

The empirical discovery of hitherto unknown physical interaction between angular momentum of a spinning gyroscope and Earth’s magnetic and electric fields.

All we need to perform this Nobel Prize winning experiment is a gyroscope with a vertical support, and a Faraday cage.

According to my hypothesis, there will be a measurable time difference between a freely spinning gyroscope inside, and outside the Faraday cage.

gyroscope freely spinning inside a Faraday cage will come to rest in less time than when spinning outside it. 

The reason for this effect is that the gyroscope inside a Faraday cage will be spinning in the absence of Earth’s magnetic and electric fields.

The gyroscope spinning outside the cage in the presence of Earth’s magnetic and electric fields is subject to the influence of the Biefeld-Brown effect that causes the gyroscope to resist the attraction of Earth’s gravity, which happens to be none other than pure natural antigravity effect.


“ Scientific discovery consists of seeing what everybody has seen, and thinking what nobody else has thought. Scientific discovery must be, by definition, at variance with existing knowledge. During my lifetime, I made two. Both were rejected offhand by the Popes of that field of science.” 

—  Nobel Prize Laureate, 1937


Please, take a look at the pre-selected fragments of the following videos :



We have two experimental conditions for the spinning gyro:

  1. OUTSIDE the Faraday cage;
  2. INSIDE the Faraday cage (and under the magnetic shielding).

The measured time difference will be due to the lack of Earth’s electric field inside the cage, and also due to a weaker Earth’s magnetic field under the magnetic shielding.

Considering the intensity (upto 65 micro-Tesla) and the direction of Earth’s magnetic field lines (compass), we could try to perform the experiment under one additional condition.

OUTSIDE the Faraday cage, we could increase the strength of Earth’s magnetic field by placing the spinning gyro between two strong neodymium magnets which will be aligned with Earth’s magnetic lines polarization.

According to my hypothesis, this should strengthen the anti-gravity effect and therefore increase the time needed for the gyro to come to rest. This would give us 3 results:

  1. LONGEST measured time will be when gyro is outside the cage and between the two magnets;
  2. MEDIUM measured time will be when gyro is simply alone outside the cage;
  3. SHORTEST measured time will be when gyro is inside the cage and under the magnetic shielding.



If you are going to perform similar kinds of experiments to these in the following video in order to demonstrate the nonexistence of any antigravity effect, then it clearly indicates that you do not understand the principles of the Experimental Quantum Antigravity Hypothesis. 


THE SECOND, simpler, Nobel Prize winning experiment









To be more realistic, and also more empirically precise, we need to perform the above experiment in slightly different way than it seems to be implied by the above illustrations.

The two gyros hang in balance, motionless. By hand, let’s raise one motionless gyro, and let it come down freely. It will oscillate before it comes back to motionless balance again in due time. 

Now, let’s repeat it, this time raising a spinning gyro. It will freely come down, but slower. It will take more time due to a little bit of antigravity effect it will generate. This will decrease the frequency of its oscillations before it comes back to the motionless balance again. Perhaps the mean of the amplitude might be slightly shifted upward from the motionless balance level?

It would be interesting to check if the direction of spin has influence on the results. It should not have any.

The reason why the spinning gyro (with the horizontal spin axis) might not take off and antigravitate in a spectacular fashion, as it was suggested by the above illustrations, is that its angular velocity (and angular momentum) will start to instantly decelerate upon releasing it at the motionless balance level.

Then again, it may as well raise, depending on how strong its angular momentum is when it is released at the level of the motionless balance.

If instead of a gyro we would use a rotor with a constant angular velocity (and angular momentum), the spinning rotor would slowly raise (antigravitate) at a constant rate. For the rotor to accelerate its antigravitating movement, we would need to accelerate its angular velocity (and angular momentum).

The spinning gyro (with the horizontal spin axis), should be suspended on the balance-scale in the way that will prevent it from precessing (or rotating),  and the gyro should be allowed a degree of freedom to naturally hang horizontally at all times, even when it goes up, or down. The balance-scale should be allowed to move only up, or down. These conditions could be pretty much self-evident from looking at the very primitive graphics that were used above to illustrate the experiment.

What if we repeat this experiment with both gyros having their axis of spin oriented vertically, instead of horizontally? What if one gyro is spinning horizontally, and the other one is spinning vertically? For the above two options we can try each direction of spin, too.

Experimenting with rotors is a bit more difficult, especially for the reason that should they happen to be electrically powered, this could potentially introduce electromagnetic field which in turn could interfere with Earth’s magnetic and electric fields in an unpredictable manner.

In this experiment, the natural antigravity effect is the result of a horizontally oriented angular momentum interacting with Earth’s perpendicular magnetic and electric fields.

For the antigravity effect to be pronounced enough, we need a heavier gyro spinning at few thousand rpm. I would speculate that a 1000g (about 2 pounds) gyro spinning upwards of 4000rpm could produce quite impressive results. Because in this simple experiment we do not intend to alter the intensity of Earth’s magnetic and electric fields, therefore the only option we have for increasing the strength of the antigravity effect is to increase the value of the angular momentum by increasing the weight, the angular velocity, or the angular acceleration of the gyro.


 “ I have collected all the measurement data for my equations. If we take a mass and rotate it very rapidly, we can generate gravity. We can increase gravity, we can weaken it, we can steer it in any direction. I have the theory. I will publish it. I have all the mathematical equations. I will explain it. I think my theory is mature. I will tell the whole scientific world: Antigravity is nothing to laugh about. I think the experiments of Dr. Podkletnov have shown the antigravity effect crystal clear. This is too important. It should belong to all the American people.” — Dr. Ning Li  ( Antigravitation entdeckt )



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s